OFFSHORE RACING CONGRESS

ORC Rating Systems 2014 – v1.02
ORC International & ORC Club
Copyright © 2014 Offshore Racing Congress.

All rights reserved. Reproduction in whole or in part is only with the permission of the Offshore Racing Congress.

Cover picture: Avantime ORCi European Championship, Sandhamn, Sweden 2013 by courtesy Malcolm Hanes

Deleted rule from 2013 version: 114.4, 208.5

Version 1.01 – 23.02.2014 – Updated rules 207.2, 208.2(a), 207.3 and 304.1(c)(ii)
Version 1.02 – 16.03.2014 – Updated rules 113.3, 402.4(d), 403.2, 403.3

Margin bars denote rule changes from 2013 version
ORC RATING SYSTEMS

ORC International

Club

2014

Offshore Racing Congress, Ltd.

www.orc.org
orc@orc.org
CONTENTS

 Introduction ... 3

1. LIMITS AND DEFAULTS
 100 General ... 5
 101 Materials ... 6
 102 Crew Weight .. 6
 103 Hull ... 6
 104 Appendages .. 7
 105 Propeller ... 7
 106 Stability ... 7
 107 Righting Moment ... 8
 108 Rig ... 9
 109 Mainsail .. 9
 110 Mizzen .. 10
 111 Headsail ... 10
 112 Mizzen Staysail .. 11
 113 Symmetric Spinnaker ... 12
 114 Asymmetric Spinnaker ... 12

2. RULES APPLYING WHILE RACING
 200 Crew weight .. 13
 201 Ballast, Fixtures and Equipment 13
 202 Drop Keels and Movable Appendages 13
 203 Centerboard ... 13
 204 Manual Power ... 13
 205 Rig ... 13
 206 Sails ... 14
 207 Headsails ... 14
 208 Spinnakers ... 14
 209 Mizzen Staysail ... 15
 210 Penalties .. 15

3. CERTIFICATES
 301 Certificates .. 16
 302 One Design Certificates .. 16
 303 Certificate Issuing ... 17
 304 Owner’s Responsibility ... 17
 305 Measurement Protests .. 18
 306 National Prescriptions ... 19

4. SCORING
 401 General .. 20
 402 Performance Curve Scoring 20
 403 Simple Scoring Options ... 22

 ORC International Certificate Sample 24
 ORC Club Certificate Sample 27

 Index of Symbols ... 28
Introduction

ORC Rating systems (ORC International and ORC Club) use the International Measurement System (IMS) as a measurement platform and the ORC Velocity Prediction Program (VPP) to rate boats of different characteristics in size, hull and appendages shape and configuration, stability, rig and sails measurement, propeller installation and many other details affecting their theoretical speed. Boat ratings are calculated from the predicted boat speeds, calculated for 7 different true wind speeds (6-8-10-12-14-16–20 knots) and 8 true wind angles (52°-60°-75°-90°-110°-120°-135°-150°), plus the 2 “optimum” VMG (Velocity Made Good) angles: beating (TWA=0°) and running (TWA=180°), which are calculated obtaining an optimum angle at which the VMG is maximized.

From this matrix of predicted performances a variety of handicaps are derived, and corrected times can be obtained, selecting from a variety of options that range from the Single number and Triple number scoring methods based on Time-on-Distance or Time-on-Time, to the “automated” methods such as the simple Performance Line Scoring (PLS) or the more sophisticated Performance Curve Scoring (PCS).

The VPP is explained in detail in the VPP Documentation guide and is the basis of the ORC handicap system. A VPP simulation software package can be purchased to study the theoretical boat speeds derived from the calculations when using IMS measurements. Details and order forms are available at the ORC website: www.orc.org.

Users of ORC Rating systems should consult the Administrative part of the IMS (Part A) for appropriate use of abbreviations, definitions, and symbols.

ORC International certificates may be issued for boats which are completely measured in accordance with the IMS and complying with the requirements of the IMS Rules and Regulations, as well as those expressed in this document.

In contrast, ORC Club certificates may be issued with less than complete IMS measurement where measurement data may be declared and/or obtained from other sources. The Organizing Authority of any race or regatta will specify whether ORC International or ORC Club certificates are required for entry, but both certificate types can be mixed in any race, being fully compatible.
The following measurements with appropriate IMS rules are used for the ORC Rating systems:

<table>
<thead>
<tr>
<th>Hull and appendages in the symmetry plane</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF file</td>
<td>B3</td>
</tr>
<tr>
<td>FFM Freeboard Forward Measured</td>
<td>B5.3</td>
</tr>
<tr>
<td>FAM Freeboard Aft Measured</td>
<td>B5.4</td>
</tr>
<tr>
<td>SG Water Specific Gravity</td>
<td>B5.5</td>
</tr>
<tr>
<td>Other Hull Measurements</td>
<td>B7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendages not included in the OFF File</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Centerboard</td>
<td>C2</td>
</tr>
<tr>
<td>Twin Rudders</td>
<td>C3</td>
</tr>
<tr>
<td>Bilgeboard</td>
<td>C4</td>
</tr>
<tr>
<td>Trim tab</td>
<td>C5</td>
</tr>
<tr>
<td>Dynamic Stability System</td>
<td>C6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Propeller</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Propeller Type</td>
<td>D2</td>
</tr>
<tr>
<td>Propeller Installation</td>
<td>D3</td>
</tr>
<tr>
<td>Propeller Measurements</td>
<td>D4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stability</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PLM Length of Manometer</td>
<td>E2.2</td>
</tr>
<tr>
<td>GSA Gauge Surface Area</td>
<td>E2.3</td>
</tr>
<tr>
<td>RSA Propeller Measurements</td>
<td>E2.4</td>
</tr>
<tr>
<td>WD Weight Distance</td>
<td>E2.6</td>
</tr>
<tr>
<td>W1-4 Inclining Weights</td>
<td>E2.7</td>
</tr>
<tr>
<td>PDI-4 Pendulum Deflections</td>
<td>E2.8</td>
</tr>
<tr>
<td>WBV Water Ballast Volume</td>
<td>E3.1</td>
</tr>
<tr>
<td>LIST Average List Angle</td>
<td>E3.4, 4.2</td>
</tr>
<tr>
<td>CANT Average Canting Angle</td>
<td>E6.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rig</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P Mainsail Hoist</td>
<td>F2.1</td>
</tr>
<tr>
<td>IG Height of Headsail Hoist</td>
<td>F3.1</td>
</tr>
<tr>
<td>ISP Height of Spinnaker Hoist</td>
<td>F3.2</td>
</tr>
<tr>
<td>BAS Boom Above Sheerline</td>
<td>F3.4</td>
</tr>
<tr>
<td>MDT1 Max. Transverse Mast</td>
<td>F4.1</td>
</tr>
<tr>
<td>MDL1 Max. Fore-and-Aft Mast</td>
<td>F4.2</td>
</tr>
<tr>
<td>MDT2 Min. Transverse Mast</td>
<td>F4.3</td>
</tr>
<tr>
<td>MDL2 Min. Fore-and-Aft Mast</td>
<td>F4.4</td>
</tr>
<tr>
<td>TL Taper Length</td>
<td>F4.5</td>
</tr>
<tr>
<td>MW Mast Width</td>
<td>F4.6</td>
</tr>
<tr>
<td>GO Forestay Outrigger</td>
<td>F4.7</td>
</tr>
<tr>
<td>E Mainsail Foot</td>
<td>F5.1</td>
</tr>
<tr>
<td>BD Boom Diameter</td>
<td>F5.2</td>
</tr>
<tr>
<td>J Foretriangle Base</td>
<td>F6.1</td>
</tr>
<tr>
<td>SFJ Stem to Forward End of J</td>
<td>F6.2</td>
</tr>
<tr>
<td>FSP Forestay Perpendicular</td>
<td>F6.5</td>
</tr>
<tr>
<td>SPL Spinnaker Pole Length</td>
<td>F7.1</td>
</tr>
<tr>
<td>TPS Tacking Point of Spinnaker</td>
<td>F7.2</td>
</tr>
<tr>
<td>MWT Mast Weight</td>
<td>F8.1</td>
</tr>
<tr>
<td>MCG Mast Vertical Center of Gravity</td>
<td>F8.3</td>
</tr>
<tr>
<td>Other Rig Measurements</td>
<td>F9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mizzen Rig</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PY Mainsail Hoist Mizzen</td>
<td>F10.1</td>
</tr>
<tr>
<td>BASY Boom Above Sheerline Mizzen</td>
<td>F10.1</td>
</tr>
<tr>
<td>MDT1Y Max. Transverse Mast Mizzen</td>
<td>F10.1</td>
</tr>
<tr>
<td>MDL1Y Max. Fore-and-Aft Mast Mizzen</td>
<td>F10.1</td>
</tr>
<tr>
<td>MDT2Y Min. Transverse Mast Mizzen</td>
<td>F10.1</td>
</tr>
<tr>
<td>MDL2Y Min. Fore-and-Aft Mast Mizzen</td>
<td>F10.1</td>
</tr>
<tr>
<td>TLY Taper Length Mizzen</td>
<td>F10.1</td>
</tr>
<tr>
<td>EY Mainsail Foot Mizzen</td>
<td>F10.1</td>
</tr>
<tr>
<td>BDY Boom Diameter Mizzen</td>
<td>F10.1</td>
</tr>
<tr>
<td>IY Height of Mizzen Staysail Hoist</td>
<td>F10.2</td>
</tr>
<tr>
<td>EB Distance Between Masts</td>
<td>F10.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sails</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HB Mainsail Top Width</td>
<td>G2.1</td>
</tr>
<tr>
<td>MGT Mainsail Upper Width</td>
<td>G2.1</td>
</tr>
<tr>
<td>MGU Mainsail 3/4 Width</td>
<td>G2.1</td>
</tr>
<tr>
<td>MGM Mainsail 1/2 Width</td>
<td>G2.1</td>
</tr>
<tr>
<td>MGL Mainsail 1/4 Width</td>
<td>G2.1</td>
</tr>
<tr>
<td>HBY Mizzen Top Width</td>
<td>G3</td>
</tr>
<tr>
<td>MGTY Mizzen Upper Width</td>
<td>G3</td>
</tr>
<tr>
<td>MGUY Mizzen 3/4 Width</td>
<td>G3</td>
</tr>
<tr>
<td>MGMY Mizzen 1/2 Width</td>
<td>G3</td>
</tr>
<tr>
<td>MGLY Mizzen 1/4 Width</td>
<td>G3</td>
</tr>
<tr>
<td>JH Headsail Top Width</td>
<td>G4.1</td>
</tr>
<tr>
<td>JGT Headsail Upper Width</td>
<td>G4.1</td>
</tr>
<tr>
<td>JGU Headsail 3/4 Width</td>
<td>G4.1</td>
</tr>
<tr>
<td>JGM Headsail 1/2 Width</td>
<td>G4.1</td>
</tr>
<tr>
<td>JGL Headsail 1/4 Width</td>
<td>G4.1</td>
</tr>
<tr>
<td>JL Headsail Luff</td>
<td>G4.1</td>
</tr>
<tr>
<td>LPG Headsail Perpendicular</td>
<td>G4.1</td>
</tr>
<tr>
<td>SMG Symm. Spinnaker Mid Width</td>
<td>G6.4</td>
</tr>
<tr>
<td>SF Symm. Spinnaker Foot</td>
<td>G6.4</td>
</tr>
<tr>
<td>SL Symm. Spinnaker Luff/Leech</td>
<td>G6.4</td>
</tr>
<tr>
<td>AMG Asymm. Spinnaker Mid Width</td>
<td>G6.5</td>
</tr>
<tr>
<td>ASF Asymm. Spinnaker Foot</td>
<td>G6.5</td>
</tr>
<tr>
<td>SLU Asymm. Spinnaker Luff</td>
<td>G6.5</td>
</tr>
<tr>
<td>SLE Asymm. Spinnaker Leech</td>
<td>G6.5</td>
</tr>
</tbody>
</table>
1. LIMITS AND DEFAULTS

100 General

100.1 The IMS Measurement dataset of any boat is processed by the Lines Processing Program (LPP) which calculates hydrostatics and all hull characteristics required by the VPP. The calculations of the main hydrostatic data are explained in principle below, while the exact formulations are defined in the VPP and its documentation.

100.2 Default water specific gravity SG shall be 1.0253. FA and FF shall be adjusted from the measured freeboards FAM and FFM depending on the difference between SG at the time of measurement and the default value defined above. All hydrostatic calculations are then made using the flotation plane in nominal seawater, i.e. with default specific gravity. FA and FF also include freeboards adjustments for the boats measured in measurement trim before 31.12.2012. Freeboards are adjusted based on deduction of total weight and longitudinal position of items recorded in the measurement inventory at the time of measurement and not included in IMS B4.1.

100.3 Sailing Trim shall be the plane of flotation derived from Measurement Trim as in 100.2 with the addition of weight to represent crew, sails and gear.

100.4 Height of Base of I (HBI) is the calculated freeboard in Sailing Trim at the base of IG and ISP. It is used to establish the height of the center of effort of the sailplan.

100.5 DSPM and DSPS are the displacements calculated from the volume resulting from the linear integration of the immersed section areas obtained from the hull lines of the Offsets and the freeboards afloat, adjusted to the standard SG, in Measurement Trim and Sailing Trim respectively. DSPM is printed on the ORC certificate.

100.6 The Sailing Length (IMS L) is an effective sailing length which takes into account the hull shape along its length and especially at the ends of the yacht, both above and below the plane of flotation in Sailing Trim. L is a weighted average of lengths for three conditions of flotation: two with the yacht upright and one with the yacht heeled. The lengths for the three conditions of flotation from which L is calculated are second moment lengths derived from immersed sectional areas attenuated for depth and adjusted for appendages. The second moment lengths are:

- LSM0 is for the yacht in Measurement Trim floating upright.
- LSM1 is for the yacht in Sailing Trim floating upright.
- LSM2 is for the yacht in Sailing Trim floating with 2 degrees heel.
- LSM3 is for the yacht in Sailing Trim floating with 25 degrees heel.
- LSM4 is for the yacht in a sunk condition such that compared to Sailing Trim it is sunk 0.025*LSM1 forward and 0.0375*LSM1 aft, floating upright.

The LPP calculates LSM's taken from the canoe body without appendages and from the full hull with appendages. The final LSM's are the averages of full hull and canoe body LSM's. IMS L is a fundamental parameter taken into account by the VPP in determining hull resistance and it is calculated as:

$$L = 0.3194 \cdot (LSM1 + LSM2 + LSM4)$$

100.7 The effective beam B is a mathematical expression of beam in which elements of beam throughout the immersed portion of the hull are taken into account with emphasis on beam elements close to the plane of flotation and remote from the ends of the hull. It is derived from the transverse second moment of the immersed volume attenuated with depth for the yacht in Sailing Trim floating upright.

100.8 The effective hull depth T is a depth-related quantity for the largest immersed section of the hull. It is derived from the area of the largest immersed section attenuated with depth for the yacht in Sailing Trim floating upright divided by B.

100.9 The Beam Depth Ratio BTR is the effective beam divided by the effective hull depth $BTR = B/T$.

100.10 The Maximum Draft of the Hull including fixed keel shall be the vertical distance from the Sailing Trim plane of flotation to the lowest point of fixed keel. For a centerboard, when $KCDA$ is measured and recorded, the maximum draft shall be decreased by $KCDA$.

VCGD is the vertical centre of gravity distance from the datum line in the hull offset file, while VCGM is the vertical centre of gravity from the measurement trim waterline.

101 Materials

101.1 It is the intention of the ORC Rating Systems to promote safety, address cost and allow materials that are readily available while prohibiting materials and processes that are not readily available.

101.2 The following materials are prohibited:

a)	In hull and deck structures: Carbon fiber with modulus exceeding 270 GPa.
b)	In spars with the exception of booms, bowsprit and spinnaker poles: Cored sandwich construction where the core thickness at any section exceeds the thickness of the two skins.
c)	No material with density greater than 11.34 kg/dm3 except when fitted to the boat before 01.01.2013.
d)	Pressure applied in the manufacture of hull and deck structures greater than 1 atmosphere
e)	Temperature applied in the manufacture of hull and deck structures greater than 80°C.
f)	Aluminium honeycomb cores in hullshell and deckshell structures.
g)	In hull and deck structures: Plastic foam core of nominal density less than 60 kg/m3.

102 Crew Weight

102.1 The maximum crew weight may be declared by the owner.

102.2 If the maximum crew weight is not declared it shall be taken as default calculated to the nearest kilogram as follows:

$$CW = 25.8 \cdot LSM^{0.4262}$$

102.3 The possibility of extending crew position beyond the IMS sheerline is taken into account through CEXT factor in accordance with ORC Sportboat Class rule 4(c).

103 Hull

103.1 Age Allowance (AA) is a credit for age of 0.0325% of ratings increase for each year from Age or Series Date to the current rule year up to maximum of 15 years (0.4875%).

103.2 Dynamic Allowance (DA) is a credit representing the dynamic behavior of a boat taking into account performance in unsteady states (i.e. while tacking) calculated on the basis of: Upwind Sail Area/Volume ratio, Upwind Sail Area/Wetted Surface ratio, Downwind Sail Area/Volume ratio, Downwind Sail Area/Wetted Surface ratio and Length/Volume ratio.

It is fully applied to the ratings of Cruiser/Racers, while for the Performance boats it is applied incrementally with only 20% of the full calculated DA applied in the fourth year and a further 20% in each of the following years until the full DA is applied in the eighth year.

103.3 NMP (Non Manual Power) is the penalty coefficient for boats using non-manual power as defined in 204(b), where the penalty coefficients are summarized as follows:

<table>
<thead>
<tr>
<th>Category according to the IMS Appendix 1</th>
<th>Performance</th>
<th>Cruiser/Racer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusting sheets to trim clew of a sail, or a boom</td>
<td>0.25 %</td>
<td>0.375 %</td>
</tr>
<tr>
<td>Adjusting backstay, vang or outhaul</td>
<td>0.25 %</td>
<td>0.125 %</td>
</tr>
</tbody>
</table>
If the declared crew weight as in 102.1 is smaller than default crew weight as in 102.2, the penalty is decreased by multiplying appropriate penalty coefficient with:

\[
NMP_{\text{final}} = NMP \cdot \left(\frac{CW_{\text{declared}}}{CW_{\text{default}}} \right)^2 \%
\]

104 Appendages
The longitudinal movement of the center of gravity of a centerboard when it is being raised or lowered shall not exceed 0.06 \(\times \) LOA.

105 Propeller
105.1 PIPA shall be the propeller installation projected area calculated on propeller type, installation and measurements.
105.2 For twin propeller installation, PIPA is doubled.

106 Stability
106.1 Limit of positive stability (LPS) as calculated by the LPP from the measured righting moment shall not be less than 103.0 degrees, except for the ORC Sportboats for which the limit is 90.0 degrees.
106.2 Stability Index shall be calculated as follows:

\[
\text{Stability Index} = \text{LPS} + \text{Capsize Increment (CI)} + \text{Size Increment (SI)}
\]

\[
\begin{align*}
CI &= 18.75 \times \left(2 - \frac{MB}{3 \sqrt{\text{DSPM}/64}} \right) \\
SI &= \left(\frac{12 \times \frac{1}{3} \sqrt{\text{DSPM}/64} + \text{LSM0}}{3} \right) - 30
\end{align*}
\]

DSPM – Displacement in measurement trim calculated by the VPP
LSM0 – Second moment length calculated by the VPP
CI shall not be taken as greater than 5.0
SI shall not be taken as greater than 10.0.

Stability Index for water ballast yachts is calculated with the ballast tankage full on one side, empty on the other and for canting keel yachts with the keel fully canted.

106.3 Minimum Stability Index may be limited by the Notice of Race and Sailing Instructions for the Offshore Special Regulations Categories 0, 1 or 2 events, but other limits may also be set for any particular event.

<table>
<thead>
<tr>
<th>Offshore Race Category</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Stability Index</td>
<td>120</td>
<td>115</td>
<td>110</td>
</tr>
</tbody>
</table>

106.4 For a boat with water ballast or canting keel, the Ballast Leeward Recovery (BLR) Index represents such a boat’s relative ability to recover from a knock down with sails aback, i.e., knocked down with all water ballast or canting keel to leeward. BLR Index shall be calculated as follows:

\[
\text{BLR Index} = \frac{RA90 \cdot \text{DSPS}}{6 \cdot \text{SA} \cdot \text{CE}} + 0.5
\]

Where the following values taken with full leeward cant or leeward ballast tankage full, windward empty, they are calculated by the VPP, in metric units:

RA90 - Righting arm, 90 degrees heel, sailing trim
SA - Rated sail area
CE - Center of Effort of the rated sail area
106.5 Minimum BLR Index may be limited by the Notice of Race and Sailing Instructions for the Offshore Special Regulations Categories 0, 1 or 2 events, but other limits may also be set for any particular event.

Offshore Race Category 0: Minimum BLR Index = $0.90 + 0.007 \times (LSM1 - 5)$

Offshore Race Category 1 & 2: Minimum BLR Index = $0.75 + 0.007 \times (LSM1 - 5)$

107 Righting Moment

107.1 When an inclining test is performed with weights that are transferred once from starboard to port side and the angle recorded four times in succession, the measured righting moment shall be calculated as follows:

$$RM_{(1-4)} = W_{(1-4)} \cdot 0.0175 \cdot WD \cdot \frac{PL}{PD_{(1-4)}}$$

$$RM_{measured} = \frac{RM_1 + RM_2 + RM_3 + RM_4}{4}$$

107.2 When an inclining test is performed with four weights that are transferred one by one from starboard to port side, the measured righting moment shall be calculated as follows:

$$RM_{measured} = WD \cdot PL \cdot \frac{0.0175}{SLOPE}$$

where

PL = $PLM/(1+GSA/RSA)$

SLOPE = $(4.0\times\text{SUMXY-SUMY}\times\text{SUMX}) / (4.0\times\text{SUMXSQ-SUMX}^2)$

SUMX - the sum of the inclining weights $W1+W2+W3+W4$

SUMY - the sum of the pendulum deflections

SUMXSQ - the sum of the squares of the inclining weights $W1^2+W2^2+W3^2+W4^2$

SUMXY - the sum of the products of the inclining weights multiplied with their corresponding pendulum deflections $PD1+PD2+PD3+PD4$, referenced to datum point.

The slope of a least squares fit straight line through the inclining weight vs. pendulum deflection is determined iteratively, plotting in turn each of the five possible combinations of four selected data points, as referenced to the fifth point. Of the five alternative plots, the one yielding the fit with the highest correlation coefficient determines RM.

107.3 For boats with movable boards or drop keels, the righting moment is corrected to:

$$RMC=RM+0.0175\times(WCBA*CBDA+WCBB*CBDB).$$

For yachts with fixed keels or centerboards locked to prevent any movement: $RMC=RM$.

107.4 Default righting moment shall be calculated as follows:

$$RM_{default} = 1.025 \left(a0 + a1 \cdot BTR + a2 \cdot \frac{3^{3/4}DSPM}{IMSL} + a3 \cdot \frac{SA \cdot HA}{B^5} + a4 \cdot \frac{B}{3^{3/4}DSPM} \right) \cdot DSPM \cdot IMSL$$

where all the variables are calculated by the VPP

a0 = -0.00410481856369339 (regression coefficient)
a1 = -0.0000399900056441 (regression coefficient)
a2 = -0.0001700878169134 (regression coefficient)
a3 = 0.00001918314177143 (regression coefficient)
a4 = 0.00360273975568493 (regression coefficient)

DSPM - displacement in measurement trim

SA - sail area upwind

HA - heeling arm, defined as $(\text{CEH main} \times \text{AREA main} + \text{CEH headsail} \times \text{AREA headsail}) / \text{SA} + \text{HBI} + \text{DHKA} \times 0.45$, for mizen (\text{CEH headsail} \times \text{AREA headsail} + \text{CEH mizzen} \times \text{AREA mizzen}) is added to the numerator

CEH - height of centre of effort

DHKA - Draft of keel and hull adjusted
Default righting moment shall not be taken greater than $1.3 \cdot RM_{\text{measured}}$ nor smaller than $0.7 \cdot RM_{\text{measured}}$.

For movable ballast boats the default righting moment intends to predict the righting moment of the boat without the effect of movable ballast (water tanks empty, or keel on the center plane), is then decreased by a factor $(1 - \frac{RM@25_{\text{movable}}}{RM@25_{\text{tot}}})$, where $RM@25_{\text{movable}}$ is the righting moment due to the contribution of movable ballast at 25 degrees of heel, and $RM@25_{\text{tot}}$ is the total righting moment at 25 degrees, with keel canted or windward tanks full. For these boats, the max and min bounds are set to $1.0 \cdot RM_{\text{measured}}$ and $0.9 \cdot RM_{\text{measured}}$ respectively.

107.5 The rated righting shall be calculated as follows:

$$ RM_{\text{rated}} = \frac{RM_{\text{measured}} + RM_{\text{default}}}{2} $$

If righting moment is not measured or obtained from another source, the rated righting moment shall be taken as:

$$ RM_{\text{rated}} = 1.03 \cdot RM_{\text{default}} $$

and shall not be taken less than one giving the Limit of positive stability (LPS) of 103.0 degrees or 90.0 degrees for an ORC Sportboat.

107.6 If the inclining test is not performed for boats with water ballast as prescribed in IMS E3, the vertical longitudinal and transversal centre of gravity of the water ballast will be calculated as follows:

- $VCGwb = 0.5 \cdot FA$
- $LCGwb = 0.7 \cdot LOA$
- $TCGwb = 0.9 \cdot \text{Crew Arm}$

108 Rig

108.1 The upper end of any rigging shall be attached to the mast above a point $0.225 \cdot IG$ above the sheerline, except that there may be a temporary support to the mast near the spinnaker pole when the spinnaker is set.

108.2 $P + BAS$ shall not be less than the greater of $0.96 \cdot IG$ or $0.96 \cdot ISP$.

108.3 Boom diameter by default shall be $0.06 \cdot E$. If BD exceeds this default, the mainsail rated area shall be increased as defined in 109.2.

108.4 Adjustable inner forestays, when fitted, shall be attached to the foremost mast between $0.225 \cdot IG$ and $0.75 \cdot IG$ above the sheerline.

108.5 Foretriangle height IM shall be calculated as follows:

$$ IM = \left(IG + \frac{IG \cdot (GO - MW)}{J - GO + MW} \right) $$

IM shall not be taken as less than $0.65 \cdot (P + BAS)$.

108.6 If TPS is measured and bowsprit is recorded as moveable sideways in accordance with IMS F7.3 it shall be considered by the VPP as a spinnaker pole with SPL = TPS.

109 Mainsail

109.1 Mainsail measured area shall be calculated as follows:

$$ Area = \frac{P}{8} (E + 2 \cdot MGL + 2 \cdot MGM + 1.5 \cdot MGU + MGT + 0.5 \cdot HB) $$
If any of mainsail widths are not measured, they shall be taken as:

\[
\begin{align*}
HB &= 0.05 \times E \\
MGT &= 0.25 \times E \\
MGU &= 0.41 \times E \\
MGM &= 0.66 \times E \\
MGL &= 0.85 \times E
\end{align*}
\]

Mainsail measured area is calculated by the simplified trapeze formula above, dividing the luff in amounts of 1/4, 1/2, 3/4 and 7/8. Mainsail rated area is calculated by using the actual heights on the luff from the tack point to the points where mainsail girths are measured. These actual heights are calculated as follows:

\[
\begin{align*}
MGMH &= \frac{P}{2} + \frac{MGM - E/2}{P} \times E \\
MGLH &= \frac{MGH}{2} + \frac{MGL - (E + MGM)/2}{MGH} \times (E - MGM) \\
MGUH &= \frac{MGH + P}{2} + \frac{MGU - MGM/2}{P - MGMH} \times MGM \\
MGTH &= \frac{MGU + P}{2} + \frac{MGT - MGU/2}{P - MGUH} \times MGU
\end{align*}
\]

Mainsail rated area is then calculated as follows:

\[
\begin{align*}
Area &= \frac{MGL + E}{2} \times MGLH + \frac{MGL + MGM}{2} \times (MGH - MGLH) + \\
&+ \frac{MGM + MGU}{2} \times (MGUH - MGMH) + \frac{MGT + MGU}{2} \times (MGTH - MGUH) + \\
&+ \frac{MGT + HB}{2} \times (P - MGTH)
\end{align*}
\]

Thereby, the amount of roach will proportionally increase the rated area from the measured one. Mainsail rated area shall be the largest rated area of any mainsail in the sails inventory.

109.2 If \(BD\) exceeds its limit set up in 108.3, mainsail rated area shall be increased by \(2 \times E \times (BD - 0.06 \times E)\).

110 Mizzen

Mizzen width defaults and rated area shall be calculated as for the mainsail with corresponding measurements.

111 Headsail

111.1 Headsail measured area shall be calculated as follows:

\[
Area = 0.1125 \times JL \times (1.445 \times LPG + 2 \times JGL + 2 \times JGM + 1.5 \times JGU + JGT + 0.5 \times JH)
\]

The measured area of a headsail with a distance between the half luff point and half leech point of 55% or more of the foot length (formerly known as Code 0) measured before 01/01/2014 with SLU, SLE, AMG and ASF shall be calculated as follows:
\[ASL = \frac{SLU + SLE}{2} \]
\[Area = 0.94 \cdot \frac{ASL \cdot (ASF + 4 \cdot AMG)}{6} \]

111.2 For headsails without a leech roach, if any of its widths are not measured, it shall be taken as follows:

\[
\begin{align*}
JH &= 0.050 \cdot LPG \\
JGT &= 0.125 \cdot LPG + 0.875 \cdot JH \\
JGU &= 0.250 \cdot LPG + 0.750 \cdot JH \\
JGM &= 0.500 \cdot LPG + 0.500 \cdot JH \\
JGL &= 0.750 \cdot LPG + 0.250 \cdot JH
\end{align*}
\]

Headsails with a leech roach shall be completely measured.

111.3 Headsail rated area shall be the largest measured area for each of headsail set on the forestay and headsail set flying in the sails inventory, but shall not be taken less than:

\[
0.405 \cdot J \cdot \sqrt{IM^2 + J^2} \quad \text{or} \quad 0.762 \cdot \sqrt{JSP^2 + J^2 \cdot TPS}
\]

for headsails set flying.

However, headsail set flying will not be taken into VPP calculations if its area is less than the smaller of:

a) its minimum area as defined above
b) the largest measured area of the headsail set on the forestay

111.4 Aerodynamic lift coefficients of the VPP calculation will be selected for different conditions as follows:

a) Headsail set on the forestay
b) Headsail set flying
c) Headsail set flying with tight luff having

\[JL < \sqrt{JSP^2 + TPS^2} \quad \text{and} \quad JGM < 0.6 \cdot LPG \]

or when there are battens on the headsail

Lift coefficients for option c) are used whenever there is one headsail in the sails inventory with tight luff.

If any of the headsails in the sails inventory have battens, the lift coefficients are multiplied with an appropriate factor. However, headsail set on the forestay with \(LPG < 110\% \) of \(J \) always use coefficients without battens.

Additionally, aerodynamic lift coefficients are credited in the upwind angles (AWA < 50) for each of the following:

d) If there is a headsail furler on a fixed forestay used in association with only one headsail in accordance with IMS F9.8
e) If all headsails and the mainsail are made of woven polyester.

112 Mizzen Staysail

Mizzen staysail rated area shall be calculated as follows:

\[Area = YSD \cdot (0.5 \cdot YSMG + 0.25 \cdot YSF) \]
113 **Symmetric Spinnaker**

113.1 Symmetric spinnaker measured area shall be calculated as follows:

\[\text{Area} = \frac{SL \cdot (SF + 4 \cdot SMG)}{6} \]

Symmetric spinnaker rated area shall be the largest measured area of any symmetric spinnaker in the sails inventory, but it shall not be taken less than:

\[1.14 \cdot \sqrt{ISP^2 + J^2} \cdot \max(SPL; J) \]

113.2 If any of SL, SMG or SF is not measured, it shall be taken as follows:

\[SL = 0.95 \cdot \sqrt{ISP^2 + J^2} \]
\[SF = 1.8 \cdot \max(SPL; J) \]
\[SMG = 1.8 \cdot \max(SPL; J) \]

If SPL is not measured it shall be taken as \(J \).

113.3 If there is no spinnaker measured, the boat will be rated with an asymmetric spinnaker of \(\text{Area} = 1.064 \times \text{Area of the largest headsail set on the forestay.} \)

114 **Asymmetric Spinnaker**

114.1 The asymmetric spinnaker luff shall be calculated as

\[ASL = \frac{SLU + SLE}{2} \]

114.2 Measured area for Asymmetric spinnaker shall be calculated as follows:

\[\text{Area} = \frac{ASL \cdot (ASF + 4 \cdot AMG)}{6} \]

The asymmetric spinnaker rated area shall be the largest measured area of any asymmetric spinnaker in the sails inventory, but it shall not be taken less than:

\[0.6333 \cdot \sqrt{ISP^2 + J^2} \cdot \max(1.8 \cdot SPL; 1.8 \cdot J; 1.6 \cdot TPS) \]

114.3 If either of ASL, AMG or ASF are not measured, each shall be taken as follows:

\[ASL = 0.95 \cdot \sqrt{ISP^2 + J^2} \]
\[ASF = \max(1.8 \cdot SPL; 1.8 \cdot J; 1.6 \cdot TPS) \]
\[AMG = \max(1.8 \cdot SPL; 1.8 \cdot J; 1.6 \cdot TPS) \]

If TPS is not measured, it shall be taken as \(J + SFJ \).
2. RULES APPLYING WHILE RACING

200 Crew Weight
The weight of all crew members on board while racing weighed in light street clothes shall not be greater than the maximum crew weight as defined in 102.1 and 102.2.

201 Ballast, Fixtures and Equipment
201.1 The first sentence of the RRS 51 does not apply for the boats with water ballast and/or canting keel systems, and it is modified by adding as non-movable items recorded in the measurement inventory (IMS B4.2).

201.2 Unwarranted quantities of stores shall be considered as ballast. Any liquid carried on board in excess of 2.5 liters of drinkable fluid per person per day of racing, in the tanks or in other containers, and any fuel in excess of the quantity needed to motor for 12 hours is not permitted. Race Organizers may waive this requirement by specifying so in the Notice of Race.

201.3 Portable equipment, gear, sails and stores may only be moved from stowage for use in their primary purpose. Stowage in this respect is the position for any item of equipment or stores, to be maintained for the duration of a race or series, when such item is not in use for its primary purpose. Note: Moving sails or equipment with the intention of improving performance is prohibited and shall be considered as a breach of RRS 51, although this may be changed by the Notice of Race.

202 Drop Keels and Movable Appendages
If any drop keel or movable appendage is to be locked when racing it shall be locked so and the locking device shall be in place.

203 Centerboards
The movement of a centerboard or drop keel while racing shall be restricted to one of the following:
 a) Straight extension or retraction as in a dagger board.
 b) Extension about a single fixed pivot.

204 Manual Power
RRS 52 is modified. Non-manual power may be used for:
 a) canting keel and water ballast systems
 b) halyards, sheets to trim clew of a sail or a boom, backstay, vang orouthaul

205 Rig
205.1 Movement of the mast at the step or deck is not permitted, except for a natural movement of the mast at the deck not exceeding 10 per cent of the greatest fore and aft or transverse dimension of the mast.

205.2 If aboard, a mast jack pump shall not be used while racing.
206 Sails

206.1 Exclusive of storm & heavy weather sails required by the Offshore Special Regulations, a boat shall not carry aboard while racing more sails of each type than the numbers defined as follows:

<table>
<thead>
<tr>
<th>GPH</th>
<th>Below 475.0</th>
<th>475.0 – 599.9</th>
<th>600.0 – 700.0</th>
<th>Above 700.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainsail</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Headsails</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jib (LPG <= 1.1*J)</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Genoa (LPG > 1.1*J)</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Inner headsail</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Spinnakers</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mizzen</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

a) If there are no genoas in the sails inventory the number of jibs allowed on board shall be increased by two.

b) If genoa is used with a headsail furler credited in accordance with 111.4(d) only one genoa and no jib shall be aboard while racing. That genoa shall be of area not less than 95% of the largest genoa recorded on the certificate.

c) Inner headsail shall have LPG of 1.1*J or less and shall be tacked inside another headsail or spinnaker between the forestay and the mast.

d) Spinnakers include: symmetric and asymmetric.

206.2 Notice of Race and Sailing Instructions may modify limitations set in 206.1 appropriate to the character of race.

206.3 Operating devices for securing halyards under tension (e.g. halyard locks) shall be permitted only if they can be remotely operated from the deck.

207 Headsails

207.1 Headsails, except an inner headsail set flying shall be tacked approximately on a boat’s centerline.

207.2 Two headsails may be set on the same tack point, only if no spinnaker is in use (This amends RRS 50.1).

207.3 If the headsail is set flying, no tack pennant greater than 0.762 m may be used.

207.4 When a headsail is tacked inside spinnaker or inside another headsail, if it is trimmed flat along the center line of the boat:
 a) the clew shall not be aft of the clew of the foremost headsail trimmed on the same way
 b) no more than 50 per cent of its area shall fall abaft the foreside of the mast.

207.5 No headsail shall be set flying and tacked in front of the forestay when any spinnaker is set.

207.6 Headsails may be sheeted:
 a) to any part of the deck or rail
 b) to a fixed point no higher than 0.05*MB above the deck or coach roof
 c) to the main boom within the measurement limit according to IMS F5.3.
 d) to the spinnaker pole in accordance with RRS 50.2 and 50.3(c).

Headsails shall not be sheeted to any other spar or outrigger.

208 Spinnakers

208.1 Leech lines shall not be adjustable while racing on symmetric spinnakers.
208.2 Spinnakers may be tacked:
 a) when *TPS* is recorded in the certificate: approximately on a boat's centerline, except when they
 are tacked on a bowsprit that is recorded as movable sideways in accordance with IMS F7.3.
 b) when *SPL* is recorded in the certificate: on the spinnaker pole

208.3 Where the asymmetric spinnaker is tacked on the centerline, tack pennants of whatever length may
 be used. Spinnakers shall be sheeted on the same side as the boom, except when gybing or
 maneuvering. Regardless, the tack of the spinnaker shall not be moved on the windward side with
 the help of afterguys and/or outriggers.

208.4 Spinnakers shall be sheeted:
 a) from only one point
 b) to any part of the rail or deck
 c) to the main boom within the measurement limit according to the IMS F5.3
 and shall not be sheeted to any other spar or outrigger.

208.5 Struts, spools or similar devices used solely for the purpose of keeping the spinnaker guy away from
 the windward shrouds are permitted only when the guy is attached to the pole and shall not to be
 used for any other purpose.

209 Mizzen Staysail

209.1 Mizzen staysail shall be sheeted:
 a) to any part of the rail or deck
 b) to the mizzen boom within the measurement limit according to the IMS F10.1
 and shall not be sheeted to any other spar or outrigger.

209.2 The tack or tack pennant shall be secured abaft the point of intersection of the afterside of the
 mainmast with the main deck and must also be secured directly to and no higher than the rail cap,
 deck or cabin top (includes dog house top).

209.3 No more than one mizzen staysail shall be set at the same time.

209.4 No mizzen staysail shall be carried on a yawl or ketch whose mizzen is set on a permanent backstay
 in lieu of a mizzen mast.

210 Penalties

 If any of the rules of ORC Part 2 are broken by the crew through no fault of their actions, the penalty
 imposed may be different from disqualification, including no penalty.
3. CERTIFICATES

301 Certificates

301.1 An **ORC International certificate** may be issued for a boat completely measured in accordance with the IMS and complying with the requirements of the IMS Rules and Regulations as well as ORC Rating systems. However, IMS hull measurement as defined in IMS Part B may be replaced by designer’s data provided that:

a) The designer sends to the ORC hull data in 3D surface format (such as IGS) including the hull and all appendages with fore and aft water plane reference points which shall be marked on both sides of the hull, so that they can be used for flotation measurements. The longitudinal position of the reference points shall be inside the flotation waterline and not more than 0.05*LOA from the waterline ends

b) The ORC Central Rating Office will then create an offset file which shall be validated by checking one or more of the following:
 - LOA, MB, deck beam at any stations, any section girth or height
 - displacement calculated by the LPP from the freeboard measurements compared with one coming from actual weighing or calculated from the design waterline

This procedure shall be checked and approved by the ORC Chief Measurer and shall be used only for an exact type of boat with exact appendages for which data is provided by designer.

It is the owner’s responsibility to ensure compliance, while the designer and builder shall confirm by a signed written declaration that the data provided are within the closest possible tolerances.

301.2 An **ORC Club certificate** may be issued with less than complete IMS measurements, in cases where measurement data may be:

a) Measured in accordance with the IMS

b) Declared by the owner. Any declared data may be taken or corrected by the Rating Authority if there is reasonable doubt about any declared data.

c) Obtained from any other source, including photos, drawings, designs, data from identical or similar boats.

302 One Design Certificates

302.1 **ORC International and ORC Club certificates** may be in the form of a One Design certificate where all data affecting a boat's rating are standardized based on the set of measurements for classes having One Design class rules or having all the IMS measurements in close tolerances. In such case no measurement is needed providing that there is proof that the boat is complying with the One Design Class measurements.

302.2 Any change of the One Design class measurements shall render invalid the boat's One Design certificate and a new standard ORC International or ORC Club certificate may be issued.

302.3 Data for the ORC International or ORC Club One Design Classes based on their class rules and actual IMS measurements of at least 5 measured boats shall be collected by the ORC to issue One Design certificates, whose data will be made available to the rating authorities when ORC is satisfied that the production of the class is within close tolerances. National rating authorities may issue One Design certificates for the national One Design Classes in their area when they are satisfied with the measurement data.

302.4 One Design measurement data may be changed from time to time due to changes in the Class Rules, IMS Rule or ORC Rating systems.

302.5 One Design certificates shall have the notation “One Design”.
303 Certificate Issuing

303.1 Certificates shall be issued by the ORC Central Rating Office or by the National Rating Offices appointed by the ORC Nominating Bodies having a contract with the ORC for using ORC-certified computer software. A levy as determined by the ORC shall be paid for all valid certificates issued.

303.2 National Rating Offices shall be the Rating Authority in their areas and shall issue certificates for the boats normally stationed or racing in their jurisdiction. Measurement data of any boat shall be available and shared with any Rating Office, particularly when boats change area, owner, sail number, and are requesting certificates from several Rating Offices’ jurisdictions. Offset file data will not be available to other parties without the written permission of the Designer.

303.3 The Rating Office shall have the authority to issue the certificate upon receipt of the measurement data, but if anything that can be considered unusual or against the general interest of the IMS Rule and Regulations or ORC Rating systems is found, the Rating Office may withhold the certificate pending an examination of the case and issue a certificate only after approval is obtained from the ORC.

303.4 The certificate shall be valid until the date printed on the certificate, which shall normally be the 31st of December of the current year.

303.5 A boat shall have only one valid certificate at any one time. The valid certificate shall be only the one issued last.

303.6 When the Rating Authority has reasonable evidence that not by her own fault a boat does not comply with her certificate, or that she should never have received a certificate, it shall withdraw the certificate, inform the owner or his representative in writing of the reasons for this withdrawal, re-check the data and

a) Re-issue a certificate if non-compliance may be corrected; or

b) If non-compliance may not be corrected by the Rating Authority, the certificate shall be invalidated and the owner or his representative shall be informed in writing.

303.7 The Rating Certificates once issued are considered public, and the Rating Authority shall supply a copy of any certificate to any person upon payment of a copying charge.

304 Owner’s Responsibility

304.1 The owner or his representative shall be responsible for:

a) Preparing the boat for the measurement in accordance with the IMS

b) Declaring any required data to the measurer

c) Ensuring compliance of any measurement data to those printed on the certificate. Compliance with the certificate shall be defined as follows:

i) All measured, declared or recorded values shall be as close as possible to those on the certificate. Differences are allowed only if the values on the certificate give a worse rating (i.e., lower GPH)

ii) The sail area shall be smaller or equal to the respective one printed on the certificate. The sails inventory shall include the largest headsail set on the forestay, all headsails set flying and all headsails with $LPG > 110\%$ of J having battens.

iii) The actual crew weight shall not be considered as an issue of compliance with the certificate, but it is applied while racing in accordance with ORC Rule 200.

d) Using the boat and equipment as prescribed by the RRS, IMS Rule and ORC Rating Systems.

The owner or his representative shall sign the statement on the certificate: “I certify that I understand my responsibilities under ORC Rules and Regulations”.

304.2 A certificate shall be automatically invalidated by a change of ownership. The new owner may request a new certificate with a simple declaration that no changes have been made so a new certificate may be issued without the need of any new measurement. Conversely the new owner has every right to have his boat re-measured.

304.3 Any change of the measurement data requires new measurement an issuing a new certificate. Such a change may be:
 a) Changes of ballast in amount or location or configuration.
 b) Change of tankage, fixed or portable, in size or location.
 c) Any changes in the engine and/or propeller installation.
 d) Addition, removal or change of location of gear or equipment, or structural alteration to the hull that affect the trim or flotation of the yacht.
 e) Movement of any measurement bands used in sail area measurement, or any changes in spars, spar location or headstay position.
 f) Any change to the size, cut or shape of the maximum area sails.
 g) Changes to the shape of the yacht's hull and/or appendages
 h) Changes to spars or standing rigging configuration, including elements of rigging identified as adjustable while racing.
 i) Changes to the other hull measurements in accordance with the ORC Rule 304.
 j) Any other change of the data in the certificate that affect any rating.

305 Measurement Protests

305.1 When, as a result of any pre-race inspection or measurement, it is determined that a boat does not comply with her certificate:
 a) When the non-compliance is considered to be minor and can be easily corrected, the boat may be brought into compliance with her certificate, and, when necessary, a new certificate may be issued. The Measurer shall inform the Race Committee of such a correction, who shall approve a new certificate issue.
 b) When the non-compliance is major (even if it can be corrected) or if it cannot be corrected without requiring significant re-measurement, a boat shall not be eligible to enter a regatta. The Measurer shall inform the Race Committee who shall act in accordance with the RRS and inform the Rating Authority.

305.2 When, as a result of any measurement protest by a boat or by the Race Committee, it is determined that a boat does not comply with her certificate in accordance with 304.1(c)(i) and (ii), the non-compliance shall be calculated as a difference in percentage of GPH:
 a) If the difference is less than or equal to 0.1%, the original certificate will be maintained, the protest will be dismissed and the protestor will have to cover any cost involved. RRS 64.3(a) will apply but no corrections are needed.
 b) If the difference is more than 0.1% but less than 0.25%, no penalty shall apply, but a new certificate shall be issued based on the new measurement data and all races of the series shall be rescored using the new certificate data. The Protest will be considered accepted and the protestee will have to cover any cost involved.
 c) If the difference is 0.25% or more, a boat shall receive a 50% place penalty in any race in which her rating was incorrect. The Protest will be considered accepted and the protestee will have to cover any cost involved and the yacht shall not race again until all non-compliance issues are corrected to the limit defined in a) above.
305.3 If a boat's certificate has to be recalculated during a race or series as a result of an error or an omission in the production of the certificate of which the boat owner could not have been reasonably aware, according to 303.6(a), all races of the series shall be rescored using the new data.

305.4 The results of a race or series shall not be affected by measurement protests lodged after the prize giving or such other time as the Sailing Instructions may prescribe. Nothing in this paragraph shall bar action under the RRS concerning a boat deliberately altered and shall not limit in any way acts of the Race and Protest Committees against any individual person involved.

306 National Prescriptions

National Authorities may by their national prescriptions change rules of Part 3 for national events under their jurisdiction. National events shall be considered those where entries are only from the host country.
4. SCORING

401 General

401.1 ORC Rating systems provide a variety of methods for calculating corrected times using the ratings calculated by the ORC VPP and displayed on the ORC International and ORC Club certificates. Selection of the scoring methods depends on the size, type and level of the fleet, type of the race, and local racing conditions and its use is at the discretion of National Authorities or local event organizers, except for the events governed by the ORC Championship Rules.

401.2 Corrected time shall be displayed in days:hours:minutes:seconds. When calculating corrected time, the boat's elapsed time shall be translated to seconds, calculations shall be made and results shall be then rounded to the nearest second (for example: 12345.5 = 12346 seconds). This time in seconds shall be then put back in days:hours:minutes:seconds format.

401.3 General Purpose Handicap (GPH) is an average representation of all time allowances used for simple comparisons between boats and possible class divisions only. It is calculated as an average of the time allowances of 8 and 12 knots true wind speed for the Circular Random pre-selected course as defined in 402.4(b).

402 Performance Curve Scoring

402.1 Performance Curve Scoring is the most powerful engine of the ORC International rating system. Its unique feature, making it fundamentally different and much more precise from any other handicap system, is its capacity to give and rate different handicaps for different race conditions because yachts do not have the same performance in different wind strengths and directions.

402.2 ORC International certificate provide a range of ratings (time allowances expressed in s/NM) for different wind conditions in the range of 6 – 20 knots of true wind speed from optimum beat, over 52, 60, 75, 90, 110, 120, 135, 150 degrees of true wind angle to the optimum run.

<table>
<thead>
<tr>
<th>TIME ALLOWANCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wnd Velocity</td>
</tr>
<tr>
<td>Beat VMG</td>
</tr>
<tr>
<td>52°</td>
</tr>
<tr>
<td>60°</td>
</tr>
<tr>
<td>75°</td>
</tr>
<tr>
<td>90°</td>
</tr>
<tr>
<td>110°</td>
</tr>
<tr>
<td>120°</td>
</tr>
<tr>
<td>135°</td>
</tr>
<tr>
<td>150°</td>
</tr>
<tr>
<td>Run VMG</td>
</tr>
</tbody>
</table>

Selected Courses

Windward / Leeward	995.2	792.7	687.6	627.3	587.9	561.5	532.6
Circular Random	800.3	644.5	561.2	512.9	483.1	463.5	438.7
Ocean for PCS	905.0	708.2	596.9	527.5	481.1	447.9	402.0
Non Spinnaker	888.4	705.7	605.6	546.1	508.9	484.5	455.2

Figure 1 - Time allowances as printed on the ORC International Certificate

402.3 When calculating corrected time by the Performance Curve Scoring, a course to be sailed shall be taken as one of the pre-selected courses for which time allowances are given on the certificate, or constructed from the data measured at the racing area.
Pre-selected courses are:

a) **Windward/Leeward** (up and down) is a conventional course around windward and leeward marks where the race course consists of 50% upwind and 50% downwind legs.

b) **Circular Random** is a hypothetical course type in which the boat circumnavigates a circular island with the true wind direction held constant.

c) **Ocean for PCS** is a composite course, the content of which varies progressively with true wind velocity from 30% Windward/Leeward, 70% Circular Random at 6 knots to 100% Circular Random at 12 knots and 20% Circular Random, 80% reach at 20 knots.

d) **Non Spinnaker** is a circular random course type (see above), but calculated without the use of a spinnaker or any headsail set flying.

When the course is constructed the following data shall be taken for each leg: wind direction, length and direction of each leg, and optionally, the direction and rate of the current on each leg. Any leg can be split in sub-legs in case there is a marked shift in wind and/or current direction.

Percentage of each wind direction, corrected for the tide is calculated from the constructed course data.

For each course, a boat’s performance curve is calculated using the course definition and time allowances given in the certificate.

The vertical axis represents the speed achieved in the race, expressed in seconds per mile. The horizontal axis represents the wind speed in knots (*Figure 2*). Elapsed time shall be divided by the distance of the course to determine the average speed in seconds per mile.

For that average speed a point on the performance curve shall be determined by interpolation and a respective average wind for that points shall be determined as “Implied Wind”. If the “Implied Wind” point would fall outside of 6-20 knots of wind a respective 6 or 20 knots value shall be used.

“Implied Wind” is representing the boat’s performance on that course. The faster the boat has sailed, the higher the “Implied Wind”, which is the primary index for scoring.

Corrected times are calculated from the “Implied Wind” using the performance curve of the scratch boat which may be the fastest boat in the fleet or a theoretical “standard” boat (*Figure 3*).

For each boat’s calculated “Implied Wind” a point on the scratch boat’s performance curve shall be determined by interpolation and a respective average speed in s/NM shall be found at the vertical axis.

Such average speed shall than be multiplied by the course length and final corrected times in seconds transformed to days:hours:minutes:seconds format.

Figure 2: Performance Curve
Figure 3: Determining Corrected Times
402.10 “Implied Wind” for the winning boat is normally approximates the predominant wind strength for the race. However, in cases where the “Implied Wind” does not represent fairly the real wind strength during a race, the Fixed Wind method may be used to enter the performance curve with the predominant wind speed on the horizontal axis used to determine the appropriate Time allowance on the vertical axis. Such a time allowance is then used as a single number Time-on-Distance coefficient as defined in 403.2.

402.11 All the formulas for course and performance construction and interpolations together with relevant code for the scoring software are available from ORC and scoring software may be downloaded at the ORC website (www.orc.org).

403 Simple scoring options

403.1 ORC International and ORC Club certificates are providing simple scoring options using the ratings determined as single, double or triple number. For any of the simple scoring options, ratings are given for the offshore (coastal/long distance) and for the inshore (windward/leeward) courses.

<table>
<thead>
<tr>
<th>SCORING OPTIONS</th>
<th>OFFSHORE COASTAL / LONG DISTANCE</th>
<th>INSHORE WINDWARD / LEEWARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time On Distance</td>
<td>578.7</td>
<td>650.1</td>
</tr>
<tr>
<td>Time On Time</td>
<td>1.0368</td>
<td>1.0383</td>
</tr>
<tr>
<td>Performance Line</td>
<td>PLT 0.807 PLD 61.4</td>
<td>PLT 1.092 PLD 304.4</td>
</tr>
<tr>
<td>Triple Number</td>
<td>Low 1.0157 Medium 1.3205 High 1.4872</td>
<td>Low 0.7697 Medium 1.0522 High 1.2263</td>
</tr>
</tbody>
</table>

403.2 Time On Distance

Corrected time is calculated as follows:

\[
Corrected \ time = Elapsed \ time - (ToD \times Distance)
\]

With Time-on-Distance (ToD) scoring, the coefficient of time allowance of one boat will not change with wind velocity, but will change with length of the course. One boat will always be giving to another the same handicap in s/NM, and it is easy to calculate the difference in elapsed time between two boats needed to determine a winner in corrected time.

Special ToD coefficient calculated with an average crew weight of 170 kg is available for double handed racing as well as calculated without the use of a spinnaker or any headsail set flying.

403.3 Time On Time

Corrected time is calculated as follows:

\[
Corrected \ time = ToT \times Elapsed \ time
\]

With Time-On-Time (ToT) scoring, time allowance will increase progressively as the wind velocity increases. Course distance has no effect on the results and need not be measured. Corrected time will depend only on the elapsed time, and the difference between boats may be seen in seconds depending of the duration of the races. The longer the race, the larger the handicap.

Special ToT coefficient calculated with an average crew weight of 170 kg is available for double handed racing as well as calculated without the use of a spinnaker or any headsail set flying.
403.4 Performance line
Corrected time is calculated as follows:

\[Corrected\ time = (PLT \times Elapsed\ time) - (PLD \times Distance) \]

With the time coefficient PLT and distance coefficient PLD, two boats may be rated differently in light or heavy wind conditions, and it is possible that one boat is giving a handicap to another in light wind conditions, while the opposite may be true in heavy wind conditions.

403.5 Triple Number
Corrected time is calculated as follows:

\[Corrected\ time = ToT\ (Low,\ Medium\ or\ High) \times Elapsed\ time \]

The Triple Number system provides a set of three time multiplying factors ToTs (as described above for Time-on-Time) given for three wind ranges:

- Low Range (less or equal 9 knots)
- Medium Range (between 9 & 14 knots)
- High Range (greater or equal 14 knots)

The Race Committee shall signal before the start the wind range to be used for scoring, but it may change this in case of significant change in the weather conditions.
ORC INTERNATIONAL CERTIFICATE SAMPLE

BOAT
Name: HURAKAN
Sail Nr: ITA-2352

HULL
Length Overall: 15,658 m
Max Beam: 4,366 m
Displacement: 7,686 kg
Draft: 3,277 m
Ims Reg. Division:
Performance Dynamic Allowance: 0,00%
Fwd Accommodation: No
Hull Construction: Carbon Rudder: Yes
Crew Arm Extensions:
IMS L: 15,625 VCGD - 1,020 VCGM - 1,047
Sink: 32,77 kg/m³
Wetted Area: 41,62 m²

GENERAL
Class: TP 52
Designer: BICHEL PUGH
Builder: ORACLE
Series: 01/2008
Age: 01/2008
Age Allowance: 0,195%
Offset File: HURAK_SD_off - 24/05/2013 16:33:49
Measurement by: PATACCA - 19/06/2013

SCORING OPTIONS
<table>
<thead>
<tr>
<th></th>
<th>OFFSHORE COASTAL / LONG DISTANCE</th>
<th>INSHORE WINDWARD / LEEWARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time On Distance</td>
<td>440,7</td>
<td>503,3</td>
</tr>
<tr>
<td>Time On Time</td>
<td>1,3613</td>
<td>1,3411</td>
</tr>
<tr>
<td>Performance Line</td>
<td>Low 1,054 Medium 49,0 High 1,184</td>
<td>Low 1,079 Medium 225,7 High 1,3250</td>
</tr>
<tr>
<td>Triple Number</td>
<td>Low 1,2864 Medium 1,6801 High 1,9705</td>
<td></td>
</tr>
</tbody>
</table>

TIME ALLOWANCES

<table>
<thead>
<tr>
<th>Wind Velocity</th>
<th>6 kt</th>
<th>8 kt</th>
<th>10 kt</th>
<th>12 kt</th>
<th>14 kt</th>
<th>16 kt</th>
<th>20 kt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beat VMG</td>
<td>789,0</td>
<td>634,7</td>
<td>568,3</td>
<td>535,0</td>
<td>515,0</td>
<td>507,7</td>
<td>498,6</td>
</tr>
<tr>
<td>52°</td>
<td>506,2</td>
<td>415,3</td>
<td>388,5</td>
<td>375,5</td>
<td>365,6</td>
<td>358,0</td>
<td>348,0</td>
</tr>
<tr>
<td>60°</td>
<td>469,3</td>
<td>395,8</td>
<td>373,4</td>
<td>358,1</td>
<td>346,6</td>
<td>338,2</td>
<td>326,4</td>
</tr>
<tr>
<td>75°</td>
<td>437,2</td>
<td>381,8</td>
<td>350,5</td>
<td>330,0</td>
<td>317,4</td>
<td>306,9</td>
<td>295,8</td>
</tr>
<tr>
<td>90°</td>
<td>437,5</td>
<td>383,4</td>
<td>348,0</td>
<td>315,1</td>
<td>295,6</td>
<td>283,6</td>
<td>268,3</td>
</tr>
<tr>
<td>110°</td>
<td>450,5</td>
<td>381,4</td>
<td>355,9</td>
<td>327,2</td>
<td>302,4</td>
<td>284,0</td>
<td>273,7</td>
</tr>
<tr>
<td>120°</td>
<td>473,5</td>
<td>392,0</td>
<td>349,8</td>
<td>319,9</td>
<td>296,6</td>
<td>278,3</td>
<td>242,3</td>
</tr>
<tr>
<td>135°</td>
<td>537,3</td>
<td>418,1</td>
<td>375,9</td>
<td>338,5</td>
<td>302,5</td>
<td>272,0</td>
<td>238,6</td>
</tr>
<tr>
<td>150°</td>
<td>651,8</td>
<td>503,6</td>
<td>433,8</td>
<td>390,0</td>
<td>359,2</td>
<td>322,9</td>
<td>253,6</td>
</tr>
</tbody>
</table>

Run VMG
- 752,6
- 581,5
- 500,9
- 450,9
- 415,0
- 372,8
- 292,8

Selected Courses

Windward / Leeward	770,8	608,1	534,6	493,0	465,0	440,3	395,7
Circular Round	632,3	507,6	439,9	399,0	371,5	350,7	315,8
Ocean for PCS	678,5	530,3	448,2	396,1	359,3	331,1	289,9
Non Spinnaker	702,6	559,2	479,0	428,9	396,1	372,6	339,6

Velocity Prediction in Knots for True Wind Speeds

<table>
<thead>
<tr>
<th>Wind Velocity</th>
<th>8 kt</th>
<th>10 kt</th>
<th>12 kt</th>
<th>14 kt</th>
<th>16 kt</th>
<th>20 kt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beat VMG</td>
<td>44,4*</td>
<td>43,1*</td>
<td>40,3*</td>
<td>38,6*</td>
<td>37,1*</td>
<td>36,8*</td>
</tr>
<tr>
<td>52°</td>
<td>7,11</td>
<td>8,67</td>
<td>9,59</td>
<td>9,85</td>
<td>10,06</td>
<td>10,34</td>
</tr>
<tr>
<td>60°</td>
<td>7,67</td>
<td>9,10</td>
<td>9,64</td>
<td>10,05</td>
<td>10,39</td>
<td>10,65</td>
</tr>
<tr>
<td>75°</td>
<td>8,23</td>
<td>9,43</td>
<td>10,27</td>
<td>10,91</td>
<td>11,34</td>
<td>11,66</td>
</tr>
<tr>
<td>90°</td>
<td>8,23</td>
<td>9,39</td>
<td>10,35</td>
<td>11,43</td>
<td>12,18</td>
<td>12,69</td>
</tr>
<tr>
<td>110°</td>
<td>7,99</td>
<td>9,44</td>
<td>10,12</td>
<td>11,00</td>
<td>11,83</td>
<td>12,67</td>
</tr>
<tr>
<td>120°</td>
<td>7,60</td>
<td>9,18</td>
<td>10,29</td>
<td>11,25</td>
<td>12,14</td>
<td>12,94</td>
</tr>
<tr>
<td>135°</td>
<td>6,70</td>
<td>8,81</td>
<td>9,59</td>
<td>10,59</td>
<td>11,90</td>
<td>13,32</td>
</tr>
<tr>
<td>150°</td>
<td>5,52</td>
<td>7,15</td>
<td>8,30</td>
<td>9,23</td>
<td>10,02</td>
<td>11,15</td>
</tr>
<tr>
<td>Run VMG</td>
<td>4,78</td>
<td>6,19</td>
<td>7,19</td>
<td>7,98</td>
<td>8,67</td>
<td>9,66</td>
</tr>
<tr>
<td>Gybe Angles</td>
<td>139,1°</td>
<td>137,9°</td>
<td>144,3°</td>
<td>150,6°</td>
<td>145,7°</td>
<td>141,5°</td>
</tr>
</tbody>
</table>

© Offshore Racing Congress 2014
www.orc.org
BOAT
Name HURAKAN
File 123052.dat
Sail Nr ITA-2352
Data in meters/kilograms

INCLINING TEST AND FREEBOARDS
Inclining Test Current inclining
Plot date 22/07/2013
SG 1,0229
FFM 1,472 FF 1,474 SFFP 0,845
FA 1,124 FA 1,125 SAFP 15,817
W1 127,40 P51 524,7 WD 19,100
W2 127,40 P52 530,6 GSA 1,0
W3 127,40 P53 528,4 RSA 1,0
W4 127,40 P54 518,5 PLM 9000,0
LOF from stern on CL7 on steer
Maximum beam station from stern 11,540
Rld Measured / Default 393,6 / 546,6
Limit of positive stability / Stub index 143,5 / 142,8
Freeboard at mast at 6,540 1,271

MIZzen RIG AND SAILS
N/A

COMMENTS

MOVEABLE BALLAST
N/A

CENTERBOARD
N/A

SAILS (Maximum Areas)

<table>
<thead>
<tr>
<th>Main Sail</th>
<th>HB</th>
<th>MGT</th>
<th>MGV</th>
<th>MNG</th>
<th>MGL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>1.540</td>
<td>2.28</td>
<td>3.18</td>
<td>4.68</td>
<td>5.88</td>
</tr>
<tr>
<td>Area [r]</td>
<td>90.00</td>
<td>92.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formula</td>
<td>18 (E + 2 MGL + 2 MGV + 2.5 MGN + 1.5 MGT + 0.5 HB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HEADSAILS

<table>
<thead>
<tr>
<th>JH</th>
<th>JGT</th>
<th>JGU</th>
<th>JGM</th>
<th>JGL</th>
<th>LPG</th>
<th>JL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td>0.89</td>
<td>1.67</td>
<td>3.23</td>
<td>4.75</td>
<td>6.21</td>
<td>19.76</td>
</tr>
<tr>
<td>0.18</td>
<td>0.89</td>
<td>1.75</td>
<td>3.23</td>
<td>4.68</td>
<td>6.17</td>
<td>19.63</td>
</tr>
</tbody>
</table>

MEASUREM ENT INVENTORY

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight</th>
<th>Distance</th>
<th>VGG Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Item</td>
<td>Weight</td>
<td>Description</td>
</tr>
</tbody>
</table>

MEASUREM ENT INVENTORY

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight</th>
<th>Distance</th>
<th>VGG Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Item</td>
<td>Weight</td>
<td>Description</td>
</tr>
</tbody>
</table>

© Offshore Racing Congress 2014
www.orc.org
ORC Club Certificate Sample

BOAT
- **Name:** SCUGNIZZA
- **Sail Nr:** ITA-16639

CLASS
- **Class:** NMF55
- **Designer:** COSTELLI
- **Builder:** NAUTILUS MARINE
- **Series:** 09/2010
- **Age Date:** 10/2010
- **Age Allowance:** 0.130%

GPH 613.3

HULL
- **Data File:** 16639data.dat
- **LOA:** 11.385 m
- **Displacement:** 5.933 kg
- **Drift:** 1.050 m

SCORING OPTIONS

<table>
<thead>
<tr>
<th>Time On Distance</th>
<th>OFFSHORE</th>
<th>INSHORE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COASTAL</td>
<td>WINDWARD/LEEWARD</td>
</tr>
<tr>
<td></td>
<td>598.1</td>
<td>671.4</td>
</tr>
<tr>
<td></td>
<td>1,0031</td>
<td>1,0054</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance Line</th>
<th>PLT</th>
<th>PLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0.830</td>
<td>85.5</td>
</tr>
<tr>
<td>Medium</td>
<td>0.772</td>
<td>150.6</td>
</tr>
<tr>
<td>High</td>
<td>0.9463</td>
<td>1,4197</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Triple Number</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.9463</td>
<td>1,2479</td>
<td>1,4197</td>
</tr>
<tr>
<td></td>
<td>0.7158</td>
<td>0.9962</td>
<td>1,1766</td>
</tr>
</tbody>
</table>

Propeller
- **Installation:** Strut
- **Type:** Folding
- **PRO:** 0.405
- **PHW:** 0.108
- **RPA:** 0.0029

Centerboard
- **N/A**

Special Scoring
- **TGd:** 616.3
- **Total:** 978.6
- **Double H. GPH:** 616.3
- **Double H. OSN:** 602.8
- **Non Spin GPH:** 674.4
- **Non Spin OSN:** 626.9
- **NYS Part. Line:** 56.2
- **Spinaker configuration:** Symmetric
- **Asymmetric:** 105.0
- **Spin Pole:** Yes

Sails Limitations
- **Genoa:** 0
- **Spinnakers:** 4
- **Jibs:** 5

Stability
- **LPS (Measured):** 115.9°
- **Stability Index:** 117.7
- **OSR Category:** 1

Crew Weight
- **Declared:** 775 kg
- **Default:** 655 kg
- **Non Manual Pwr:** No

2014 ORC Club Certificate

Rating Office
- Space for Rating Office address and logo
INDEX OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Age Allowance</td>
<td>103.1</td>
</tr>
<tr>
<td>B</td>
<td>Effective Beam</td>
<td>100.7</td>
</tr>
<tr>
<td>BLRI</td>
<td>Ballast Leeward Recovery Index</td>
<td>106.4</td>
</tr>
<tr>
<td>BTR</td>
<td>Beam Depth Ratio</td>
<td>100.9</td>
</tr>
<tr>
<td>CI</td>
<td>Capsize Increment</td>
<td>106.2</td>
</tr>
<tr>
<td>CW</td>
<td>Crew Weight</td>
<td>102</td>
</tr>
<tr>
<td>DA</td>
<td>Dynamic Allowance</td>
<td>103.2</td>
</tr>
<tr>
<td>DSPM</td>
<td>Displacement in Measurement Trim</td>
<td>100.5</td>
</tr>
<tr>
<td>DSPS</td>
<td>Displacement in Sailing Trim</td>
<td>100.5</td>
</tr>
<tr>
<td>FA</td>
<td>Freeboard Aft (for default SG)</td>
<td>100.2</td>
</tr>
<tr>
<td>FF</td>
<td>Freeboard Forward (for default SG)</td>
<td>100.2</td>
</tr>
<tr>
<td>GPH</td>
<td>General Purpose Handicap</td>
<td>402.2</td>
</tr>
<tr>
<td>HBI</td>
<td>Height of Base of I</td>
<td>100.4</td>
</tr>
<tr>
<td>IM</td>
<td>Foretriangle Height</td>
<td>108.5</td>
</tr>
<tr>
<td>IMS L</td>
<td>Sailing Length</td>
<td>100.6</td>
</tr>
<tr>
<td>LPS</td>
<td>Limit of Positive Stability</td>
<td>106.1</td>
</tr>
<tr>
<td>LSM0-4</td>
<td>Second Moment Lengths</td>
<td>100.6</td>
</tr>
<tr>
<td>PIPA</td>
<td>Propeller Installation Projected Area</td>
<td>105.1</td>
</tr>
<tr>
<td>RA90</td>
<td>Righting Arm, 90 degrees</td>
<td>106.4</td>
</tr>
<tr>
<td>RM</td>
<td>Righting Moment</td>
<td>107</td>
</tr>
<tr>
<td>RMC</td>
<td>Righting Moment Corrected</td>
<td>107.3</td>
</tr>
<tr>
<td>SI</td>
<td>Size Increment</td>
<td>106.2</td>
</tr>
<tr>
<td>T</td>
<td>Effective Hull Depth</td>
<td>100.8</td>
</tr>
<tr>
<td>VCGD</td>
<td>Vertical Centre of Gravity from the offset datum line</td>
<td>100.10</td>
</tr>
<tr>
<td>VCGM</td>
<td>Vertical Centre of Gravity from the measurement trim waterline</td>
<td>100.11</td>
</tr>
</tbody>
</table>